Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ana Tesouro Vallina* and Helen Stoeckli-Evans

Institut de Chimie, Université de Neuchâtel, Avenue de Bellevaux, 51, Case Postale 2, CH2007 Neuchâtel, Switzerland

Correspondence e-mail:
helen.stoeckli-evans@unine.ch

Key indicators

Single-crystal X-ray study
$T=153 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
H -atom completeness 96%
Disorder in solvent or counterion
R factor $=0.042$
$w R$ factor $=0.095$
Data-to-parameter ratio $=12.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

catena-Poly[[silver(I)- μ-\{bis[4-(2-pyridylmethyleneamino)phenyl] ether\}] trifluoromethanesulfonate 0.4-hydrate]: a zigzag coordination polymer

The title compound, $\left[\mathrm{Ag}\left(\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}\right)\right] \mathrm{CF}_{3} \mathrm{SO}_{3} \cdot 0.4 \mathrm{H}_{2} \mathrm{O}$, can be described as a zigzag polymer. The Ag atom is coordinated to the N atoms of two pyridylimine units resulting in a distorted tetrahedral coordination geometry. Both the Ag atom and the central O atom of the ligand are situated on mutually perpendicular crystallographic twofold axes.

Comment

The reaction of the ligand bis[4-(2-pyridilmethyleneamino)phenyl] ether, L 1 , with $\mathrm{Ag}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)$ yielded an ionic complex, AgL1, (I), consisting of a one-dimensional zigzag coordination polymer, Fig. 1. Similar single-stranded silver polymers have been reported previously (Bowyer et al., 1998; Carlucci et al., 1998; Suzuki et al., 1995; Withersby et al., 1997). Using L1 and AgNO_{3} very small poor crystals of a similar zigzag polymer have also been prepared (Tesouro Vallina \& Stoeckli-Evans, 1999a). Using BF_{4}^{-}as counter-ion Cheng et al. (2000) have recently published the structure of a silver(I) double-stranded helix, previously postulated by Hannon et al. (1999) and Yoshida et al. (2000), for a similar ligand where the central ether linkage is replaced by a CH_{2} group. In $\mathrm{AgL1}$, the $\mathrm{Ag}-$ N_{py} and $\mathrm{Ag}-\mathrm{N}_{\mathrm{im}}$ bond distances, 2.283 (4) and 2.343 (4) \AA, respectively, are similar to those observed in the abovementioned complexes. The chelate bite angle of $72.69(16)^{\circ}$ is also within the expected range. The ligand is twisted about the central O atom with the two benzene rings being inclined by 51.09 (2) ${ }^{\circ}$. The two halves of the ligand (related by a twofold axis) are fairly planar which contrasts with the structure of the

ligand itself, where one half of the ligand is much less planar than the other (Tesouro Vallina \& Stoeckli-Evans, 2001). The best plane through atoms $\mathrm{N} 1 / \mathrm{C} 1-\mathrm{C} 6 / \mathrm{N} 2 / \mathrm{C} 7-\mathrm{C} 12$ is planar to within 0.055 (5) \AA and the Ag atom is displaced from this plane by 0.227 (5) \AA. In the crystal, the chains stack up the c axis with a $\pi-\pi$ overlap of symmetry-related aromatic rings; the shortest intermolecular $\mathrm{C} \cdots \mathrm{C}$ distance is $c a 3.52$ (2) \AA, Fig. 2.

Figure 1
View of the title compound showing the numbering scheme and displacement ellipsoids at 50% probability level. The disordered $\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$anion and partially occupied water molecule have been omitted for clarity.

Figure 2
Crystal packing of (I) showing the $\pi-\pi$ interactions. The H atoms and the disordered $\mathrm{CF}_{3} \mathrm{SO}_{3}^{-}$anion and partially occupied water molecule have been omitted for clarity.

61 Despite the polymeric
nature of the title compound, (I), in the solid state, positive ESI-MS (electrospray ionization mass spectroscopy) in acetonitrile indicates that the most abundant ion in solution is $\left[\mathrm{Ag}_{2} \mathrm{~L}_{2}\right]^{2+}$ at $\mathrm{m} / \mathrm{z} 486$, which corresponds to a binuclear complex, probably the double helix.

Experimental

The synthesis of bis[4-(2-pyridilmethyleneamino)phenyl]ether, L1, has been reported elsewhere (Cheng et al., 2000; Tesouro Vallina \& Stoeckli-Evans, 1999b). A methanolic solution of $\mathrm{AgCF}_{3} \mathrm{SO}_{3}$ (1 equivalent, $0.1 \mathrm{mmol}, 0.0257 \mathrm{~g}$ per 15 ml) was added slowly to a methanolic solution of L1 (1 equivalent, $0.1 \mathrm{mmol}, 0.0378 \mathrm{~g}$ per 10 ml) under N_{2} and protected from the light. The colour of the mixture changed to deep yellow and a precipitate appeared. The mixture was heated to ca 313 K with stirring for 2 h , cooled to room temperature and filtered. The yellow solid obtained was dissolved in acetonitrile and left undisturbed in the dark for $c a$ two weeks, whereupon yellow-green crystals were formed. IR (KBr pellet, $\left.\mathrm{cm}^{-1}\right): 3468,3067(\mathrm{C}-\mathrm{H}), 1626,1592,1561,1496,1441,1420(\mathrm{C}=\mathrm{C}$, $\mathrm{C}=\mathrm{N}), 1251(\mathrm{Ph}-\mathrm{O}), 1056,1029,1008,837,775\left(\mathrm{CF}_{3}\right)$. Analysis for [AgL$]\left[\mathrm{CF}_{3} \mathrm{SO}_{3}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}\left(623.41 \mathrm{~g} \mathrm{~mol}^{-1}\right)$, calculated: C 48.17, H 3.71, N 8.98\%; found: C 48.43 , H 3.36, N 8.20%. MS (ESI) $m / z: 1121$, $\left[\mathrm{Ag}_{2} \mathrm{~L}_{2} \mathrm{CF}_{3} \mathrm{SO}_{3}\right]^{+} ; 865,\left[\mathrm{AgL}_{2}\right]^{+} ; 742,\left[\mathrm{Ag}_{2} \mathrm{LCF}_{3} \mathrm{SO}_{3}\right]^{+}$and 486, $\left[\mathrm{Ag}_{2} \mathrm{~L}_{2}\right]^{2+}$. UV/Vis ($\lambda_{\text {max }} / \mathrm{nm}$, ethanol solution): 330, 390. ${ }^{1} \mathrm{H}$ NMR (DMSO- d^{6}): $7.09(4 \mathrm{H}, d, \mathrm{Ph}), 7.50(4 \mathrm{H}, d, \mathrm{Ph}), 7.70(2 \mathrm{H}, m$, py), 8.13 $(4 \mathrm{H}, d d$, py $), 8.78(2 \mathrm{H}, d$, py), $8.89(2 \mathrm{H}, s, \mathrm{C}=\mathrm{N})$.

Crystal data

$\left[\mathrm{Ag}\left(\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}\right)\right] \mathrm{CF}_{3} \mathrm{SO}_{3} \cdot 0.4 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=642.57$
Orthorhombic, Pcca
$a=15.3582(15) \AA$
$b=11.6957$ (12) \AA
$c=14.8253(12) \AA$
$V=2663.0$ (4) \AA^{3}
$Z=4$
$D_{x}=1.603 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 5109
reflections
$\theta=2.6-25.9^{\circ}$
$\mu=0.90 \mathrm{~mm}^{-1}$
$T=153$ (2) K
Block, pale yellow
$0.25 \times 0.10 \times 0.05 \mathrm{~mm}$

Data collection

Stoe IPDS diffractometer φ oscillation scans
19496 measured reflections 2588 independent reflections 1105 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.095$
$S=0.74$
2588 reflections
212 parameters
H atoms treated by a mixture of independent and constrained refinement
$R_{\text {int }}=0.180$
$\theta_{\text {max }}=25.9^{\circ}$
$h=-18 \rightarrow 18$
$k=-14 \rightarrow 14$
$l=-18 \rightarrow 18$
$w=/\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.04 P)^{2}\right]$
where $\left.P=F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.59 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.68 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0014 (3)

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

$\mathrm{Ag} 1-\mathrm{N} 1$	$2.283(4)$	$\mathrm{Ag} 1-\mathrm{N} 2$	$2.343(4)$
$\mathrm{N} 1-\mathrm{Ag} 1-\mathrm{N} 1^{\mathrm{i}}$	$126.9(2)$	$\mathrm{N} 1-\mathrm{Ag} 1-\mathrm{N} 2$	$72.69(16)$
$\mathrm{N} 1-\mathrm{Ag} 1-\mathrm{N} 2^{\mathrm{i}}$	$138.59(17)$	$\mathrm{N} 2^{\mathrm{i}}-\mathrm{Ag} 1-\mathrm{N} 2$	$119.2(2)$

The $\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$anion was disordered about a center of symmetry. The H atoms were included in calculated positions and treated as riding atoms using SHELXL default parameters. The H atoms of the partially occupied water molecule could not be located. The $R_{\text {int }}$ value of 0.18 is due to the poor quality of the crystal, which did not diffract significantly above 40° in 2θ, and the low $I / \sigma(I)$ ratio obtained. The ratio of parameters to observed data is at the lower end

metal-organic papers

of the scale, $c a 5$, but the s.u.'s. are reasonable. This is also responsable for the GOF value which is slightly less than 0.8 .

Data collection: EXPOSE (Stoe \& Cie, 1997); cell refinement: CELL (Stoe \& Cie, 1997); data reduction: INTEGRATE (Stoe \& Cie, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON99 (Spek, 1990); software used to prepare material for publication: SHELXL97.

Financial support from the Swiss National Science Foundation is gratefully acknowledged.

References

Bowyer, P. K., Porter, K. A., Rae, A. D., Willis, C. \& Wild, S. B. (1998). Chem. Commun. p. 1153.

Carlucci, L., Ciani, G., Proserpio, D. M. \& Sironi, A. (1998). Inorg. Chem. 37, 5941-5943.
Cheng, H., Chun-Ying, D. Chen-Jie, F. \& Qing-Jin, M. (2000). J. Chem. Soc. Dalton Trans. pp. 2419-2424.
Hannon, M. J., Painting, C. L. \& Alcock, N. W. (1999). Chem. Commun. p. 2023.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Stoe \& Cie (1997). IPDS Software. Stoe \& Cie GmbH, Darmstadt, Germany. Suzuki, T., Kotsuki, H., Isobe, K., Moriya, N., Nakagawa, Y. \& Ochi, M. (1995). Inorg. Chem. 35, 530-531.
Tesouro Vallina, A. \& Stoeckli-Evans, H. (1999a). Unpublished results.
Tesouro Vallina, A. \& Stoeckli-Evans, H. (1999b). Chimia, 53, 342.
Tesouro Vallina, A. \& Stoeckli-Evans, H. (2001). Acta Cryst. C57. Submitted.
Withersby, M. A., Blake, A. J., Champness, N. R., Hubberstey, P., Li, W. S. \& Schöder, M. (1997). Angew. Chem. Int. Ed. Engl. 36, 2327-2328.
Yoshida, N., Ichikawa, K. \& Shiro, M. (2000). J. Chem. Soc. Perkin Trans. 2, pp. 17-26.

