Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Ana Tesouro Vallina* and Helen Stoeckli-Evans

Institut de Chimie, Université de Neuchâtel, Avenue de Bellevaux, 51, Case Postale 2, CH-2007 Neuchâtel, Switzerland

Correspondence e-mail: helen.stoeckli-evans@unine.ch

Key indicators

Single-crystal X-ray study T = 153 K Mean σ (C–C) = 0.009 Å H-atom completeness 96% Disorder in solvent or counterion R factor = 0.042 wR factor = 0.095 Data-to-parameter ratio = 12.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

catena-Poly[[silver(I)-µ-{bis[4-(2-pyridylmethyleneamino)phenyl] ether}] trifluoromethanesulfonate 0.4-hydrate]: a zigzag coordination polymer

The title compound, $[Ag(C_{24}H_{18}N_4O)]CF_3SO_3 \cdot 0.4H_2O$, can be described as a zigzag polymer. The Ag atom is coordinated to the N atoms of two pyridylimine units resulting in a distorted tetrahedral coordination geometry. Both the Ag atom and the central O atom of the ligand are situated on mutually perpendicular crystallographic twofold axes.

Received 12 December 2000 Accepted 21 December 2000 Online 10 January 2001

Comment

The reaction of the ligand bis[4-(2-pyridilmethyleneamino)phenyl] ether, L1, with Ag(CF₃SO₃) yielded an ionic complex, AgL1, (I), consisting of a one-dimensional zigzag coordination polymer, Fig. 1. Similar single-stranded silver polymers have been reported previously (Bowyer et al., 1998; Carlucci et al., 1998; Suzuki et al., 1995; Withersby et al., 1997). Using L1 and AgNO₃ very small poor crystals of a similar zigzag polymer have also been prepared (Tesouro Vallina & Stoeckli-Evans, 1999a). Using BF_4^- as counter-ion Cheng et al. (2000) have recently published the structure of a silver(I) double-stranded helix, previously postulated by Hannon et al. (1999) and Yoshida et al. (2000), for a similar ligand where the central ether linkage is replaced by a CH₂ group. In AgL1, the Ag- N_{py} and $Ag-N_{im}$ bond distances, 2.283 (4) and 2.343 (4) Å, respectively, are similar to those observed in the abovementioned complexes. The chelate bite angle of $72.69 (16)^{\circ}$ is also within the expected range. The ligand is twisted about the central O atom with the two benzene rings being inclined by 51.09 (2)°. The two halves of the ligand (related by a twofold axis) are fairly planar which contrasts with the structure of the

ligand itself, where one half of the ligand is much less planar than the other (Tesouro Vallina & Stoeckli-Evans, 2001). The best plane through atoms N1/C1-C6/N2/C7-C12 is planar to within 0.055 (5) Å and the Ag atom is displaced from this plane by 0.227 (5) Å. In the crystal, the chains stack up the caxis with a π - π overlap of symmetry-related aromatic rings; the shortest intermolecular $C \cdot \cdot \cdot C$ distance is *ca* 3.52 (2) Å, Fig. 2.

© 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

View of the title compound showing the numbering scheme and displacement ellipsoids at 50% probability level. The disordered $CF_3SO_3^-$ anion and partially occupied water molecule have been omitted for clarity.

Figure 2

Crystal packing of (I) showing the π - π interactions. The H atoms and the disordered CF₃SO₃⁻ anion and partially occupied water molecule have been omitted for clarity.

61 Despite the polymeric

nature of the title compound, (I), in the solid state, positive ESI-MS (electrospray ionization mass spectroscopy) in acetonitrile indicates that the most abundant ion in solution is $[Ag_2L_2]^{2+}$ at m/z 486, which corresponds to a binuclear complex, probably the double helix.

Experimental

The synthesis of bis[4-(2-pyridilmethyleneamino)phenyl]ether, L1, has been reported elsewhere (Cheng et al., 2000; Tesouro Vallina & Stoeckli-Evans, 1999b). A methanolic solution of AgCF₃SO₃ (1 equivalent, 0.1 mmol, 0.0257 g per 15 ml) was added slowly to a methanolic solution of L1 (1 equivalent, 0.1 mmol, 0.0378 g per 10 ml) under N₂ and protected from the light. The colour of the mixture changed to deep yellow and a precipitate appeared. The mixture was heated to ca 313 K with stirring for 2 h, cooled to room temperature and filtered. The yellow solid obtained was dissolved in acetonitrile and left undisturbed in the dark for ca two weeks, whereupon yellow-green crystals were formed. IR (KBr pellet, cm⁻¹): 3468, 3067 (C–H), 1626, 1592, 1561, 1496, 1441, 1420 (C=C, C=N), 1251 (Ph-O), 1056, 1029, 1008, 837, 775 (CF₃). Analysis for [AgL][CF₃SO₃]·2H₂O (623.41 g mol⁻¹), calculated: C 48.17, H 3.71, N 8.98%; found: C 48.43, H 3.36, N 8.20%. MS (ESI) m/z: 1121, $[Ag_2L_2CF_3SO_3]^+$; 865, $[AgL_2]^+$; 742, $[Ag_2LCF_3SO_3]^+$ and 486, $[Ag_2L_2]^{2+}\!\!.$ UV/Vis ($\lambda_{max}\!/nm,$ ethanol solution): 330, 390. $^1\!H$ NMR (DMSO-d⁶): 7.09 (4H, d, Ph), 7.50 (4H, d, Ph), 7.70 (2H, m, py), 8.13 (4H, dd, py), 8.78 (2H, d, py), 8.89 (2H, s, C=N).

Mo $K\alpha$ radiation

reflections

 $\mu = 0.90 \text{ mm}^{-1}$

T = 153 (2) K Block, pale yellow

 $R_{\rm int} = 0.180$ $\theta_{\rm max} = 25.9^{\circ}$

 $h = -18 \rightarrow 18$

 $k = -14 \rightarrow 14$

 $l = -18 \rightarrow 18$

 $\theta = 2.6 - 25.9^{\circ}$

Cell parameters from 5109

 $0.25 \times 0.10 \times 0.05 \text{ mm}$

Crystal data

 $[Ag(C_{24}H_{18}N_4O)]CF_3SO_3 \cdot 0.4H_2O$ $M_r = 642.57$ Orthorhombic, *Pcca* a = 15.3582 (15) Å b = 11.6957 (12) Å c = 14.8253 (12) Å $V = 2663.0 (4) Å^3$ Z = 4 $D_x = 1.603 \text{ Mg m}^{-3}$ Data collection

Stoe IPDS diffractometer φ oscillation scans 19 496 measured reflections

2588 independent reflections 1105 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $w = /[\sigma^2 (F_o^2) + (0.04P)^2]$ $R[F^2 > 2\sigma(F^2)] = 0.042$ where $P = F_o^2 + 2F_c^2)/3$ $wR(F^2) = 0.095$ $(\Delta/\sigma)_{\rm max} < 0.001$ S = 0.74 $\Delta \rho_{\rm max} = 0.59 \; {\rm e} \; {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.68 \ {\rm e} \ {\rm \AA}^{-3}$ 2588 reflections 212 parameters Extinction correction: SHELXL97 H atoms treated by a mixture of Extinction coefficient: 0.0014 (3) independent and constrained refinement

Table 1

Selected geometric parameters (Å, °).

 Selected geometric parameters (A, ').

 Ag1-N1 2.283 (4)
 Ag1-N2 2.343 (4)

 $N1-Ag1-N1^i$ 126.9 (2)
 N1-Ag1-N2 72.69 (16)

 $N1-Ag1-N2^i$ 138.59 (17)
 $N2^i-Ag1-N2$ 119.2 (2)

 Symmetry code: (i) $\frac{3}{7} - x, 1 - y, z.$ 2.283 (4)
 N1-Ag1-N2 N1-Ag1-N2

The $CF_3SO_3^{-}$ anion was disordered about a center of symmetry. The H atoms were included in calculated positions and treated as riding atoms using *SHELXL* default parameters. The H atoms of the partially occupied water molecule could not be located. The R_{int} value of 0.18 is due to the poor quality of the crystal, which did not diffract significantly above 40° in 2θ , and the low $I/\sigma(I)$ ratio obtained. The ratio of parameters to observed data is at the lower end of the scale, *ca* 5, but the s.u.'s. are reasonable. This is also responsable for the GOF value which is slightly less than 0.8.

Data collection: *EXPOSE* (Stoe & Cie, 1997); cell refinement: *CELL* (Stoe & Cie, 1997); data reduction: *INTEGRATE* (Stoe & Cie, 1997); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1990); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *PLATON*99 (Spek, 1990); software used to prepare material for publication: *SHELXL*97.

Financial support from the Swiss National Science Foundation is gratefully acknowledged.

References

Bowyer, P. K., Porter, K. A., Rae, A. D., Willis, C. & Wild, S. B. (1998). *Chem. Commun.* p. 1153.

- Carlucci, L., Ciani, G., Proserpio, D. M. & Sironi, A. (1998). Inorg. Chem. 37, 5941–5943.
- Cheng, H., Chun-Ying, D. Chen-Jie, F. & Qing-Jin, M. (2000). J. Chem. Soc. Dalton Trans. pp. 2419–2424.
- Hannon, M. J., Painting, C. L. & Alcock, N. W. (1999). Chem. Commun. p. 2023.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (1990). Acta Cryst. A46, C-34.
- Stoe & Cie (1997). *IPDS Software*. Stoe & Cie GmbH, Darmstadt, Germany. Suzuki, T., Kotsuki, H., Isobe, K., Moriya, N., Nakagawa, Y. & Ochi, M. (1995).
- Inorg. Chem. 35, 530–531.
- Tesouro Vallina, A. & Stoeckli-Evans, H. (1999a). Unpublished results.
- Tesouro Vallina, A. & Stoeckli-Evans, H. (1999b). Chimia, 53, 342.
- Tesouro Vallina, A. & Stoeckli-Evans, H. (2001). Acta Cryst. C57. Submitted. Withersby, M. A., Blake, A. J., Champness, N. R., Hubberstey, P., Li, W. S. & Schöder, M. (1997). Angew. Chem. Int. Ed. Engl. 36, 2327–2328.
- Yoshida, N., Ichikawa, K. & Shiro, M. (2000). J. Chem. Soc. Perkin Trans. 2, pp. 17–26.